New approaches to Garland's method

Alan Lew Technion

Hebrew University of Jerusalem, Colloquium

December 2025

• V = a finite set.

- V = a finite set.
- A family of subsets $X \subset 2^V$ is called a simplicial complex if:

- V = a finite set.
- A family of subsets $X \subset 2^V$ is called a simplicial complex if:

$$A \in X$$
 and $B \subset A \implies B \in X$.

- V = a finite set.
- A family of subsets $X \subset 2^V$ is called a simplicial complex if:

$$A \in X$$
 and $B \subset A \implies B \in X$.

• An element $A \in X$ is called a simplex (or face) of X.

- V = a finite set.
- A family of subsets $X \subset 2^V$ is called a simplicial complex if:

$$A \in X$$
 and $B \subset A \implies B \in X$.

- An element $A \in X$ is called a simplex (or face) of X.
- The dimension of a simplex A is |A| 1.

- V = a finite set.
- A family of subsets $X \subset 2^V$ is called a simplicial complex if:

$$A \in X$$
 and $B \subset A \implies B \in X$.

- An element $A \in X$ is called a simplex (or face) of X.
- The dimension of a simplex A is |A| 1.
- The dimension of $X = \max_{A \in X} \dim(A)$.

- V = a finite set.
- A family of subsets $X \subset 2^V$ is called a simplicial complex if:

$$A \in X$$
 and $B \subset A \implies B \in X$.

- An element $A \in X$ is called a simplex (or face) of X.
- The dimension of a simplex A is |A| 1.
- The dimension of $X = \max_{A \in X} \dim(A)$.

We may think of a simplicial complex as a geometric object:

$$X = \{\emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{1,2\}, \{1,3\}, \{2,3\}, \{2,4\}, \{3,4\}, \{1,2,3\}\}$$

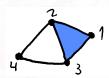
- V = a finite set.
- A family of subsets $X \subset 2^V$ is called a simplicial complex if:

$$A \in X$$
 and $B \subset A \implies B \in X$.

- An element $A \in X$ is called a simplex (or face) of X.
- The dimension of a simplex A is |A| 1.
- The dimension of $X = \max_{A \in X} \dim(A)$.

We may think of a simplicial complex as a geometric object:

$$\begin{split} X = & \{\emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \\ & \{1, 2\}, \{1, 3\}, \{2, 3\}, \\ & \{2, 4\}, \{3, 4\}, \{1, 2, 3\}\} \end{split}$$



• For $k \ge -1$, X(k) = k-dimensional simplices of X.

- For $k \ge -1$, X(k) = k-dimensional simplices of X.
- $C_k(X) = \mathbb{R}^{X(k)} = \{f : X(k) \to \mathbb{R}\}.$

- For $k \ge -1$, X(k) = k-dimensional simplices of X.
- $C_k(X) = \mathbb{R}^{X(k)} = \{f : X(k) \to \mathbb{R}\}.$
- Fix arbitrary order < on V.

- For $k \ge -1$, X(k) = k-dimensional simplices of X.
- $\bullet \ C_k(X) = \mathbb{R}^{X(k)} = \{f : X(k) \to \mathbb{R}\}.$
- Fix arbitrary order < on V.
- Coboundary operator $\delta_k(X): C_k(X) \to C_{k+1}(X)$:

$$\delta_k(X)\phi(\sigma) = \sum_{i=0}^{k+1} (-1)^i \phi(\sigma \setminus \{v_i\})$$

for $\phi \in C_k(X)$ and $\sigma = \{v_0 < v_1 < \dots < v_{k+1}\} \in X(k+1)$.

- For $k \ge -1$, X(k) = k-dimensional simplices of X.
- $\bullet \ C_k(X) = \mathbb{R}^{X(k)} = \{f : X(k) \to \mathbb{R}\}.$
- Fix arbitrary order < on V.
- Coboundary operator $\delta_k(X) : C_k(X) \to C_{k+1}(X)$:

$$\delta_k(X)\phi(\sigma) = \sum_{i=0}^{k+1} (-1)^i \phi(\sigma \setminus \{v_i\})$$

for $\phi \in C_k(X)$ and $\sigma = \{v_0 < v_1 < \dots < v_{k+1}\} \in X(k+1)$.

• *k*-th cohomology group:

$$ilde{H}^k(X;\mathbb{R}) = rac{\ker \delta_k(X)}{\operatorname{im} \delta_{k-1}(X)}$$

- For $k \ge -1$, X(k) = k-dimensional simplices of X.
- $\bullet \ C_k(X) = \mathbb{R}^{X(k)} = \{f : X(k) \to \mathbb{R}\}.$
- Fix arbitrary order < on V.
- Coboundary operator $\delta_k(X): C_k(X) \to C_{k+1}(X)$:

$$\delta_k(X)\phi(\sigma) = \sum_{i=0}^{k+1} (-1)^i \phi(\sigma \setminus \{v_i\})$$

for $\phi \in C_k(X)$ and $\sigma = \{v_0 < v_1 < \dots < v_{k+1}\} \in X(k+1)$.

• *k*-th cohomology group:

$$ilde{H}^k(X;\mathbb{R}) = rac{\ker \delta_k(X)}{\operatorname{im} \delta_{k-1}(X)} \cong ilde{H}_k(X;\mathbb{R}).$$

• Let $w: X \to \mathbb{R}_{>0}$ (weight function).

- Let $w: X \to \mathbb{R}_{>0}$ (weight function).
- Inner product on $C_k(X)$: $\langle \phi, \psi \rangle = \sum_{\sigma \in X(k)} w(\sigma) \phi(\sigma) \psi(\sigma)$.

- Let $w: X \to \mathbb{R}_{>0}$ (weight function).
- Inner product on $C_k(X)$: $\langle \phi, \psi \rangle = \sum_{\sigma \in X(k)} w(\sigma) \phi(\sigma) \psi(\sigma)$.

$$C_{k-1}(X) \stackrel{\delta_{k-1}}{\stackrel{\delta_{k-1}}{\leftarrow}} C_{k}(X) \stackrel{\delta_{k}}{\stackrel{\delta_{k}}{\leftarrow}} C_{k+1}(X)$$

- Let $w: X \to \mathbb{R}_{>0}$ (weight function).
- Inner product on $C_k(X)$: $\langle \phi, \psi \rangle = \sum_{\sigma \in X(k)} w(\sigma) \phi(\sigma) \psi(\sigma)$.

$$C_{k-1}(X) \stackrel{\delta_{k-1}}{\stackrel{\delta_{k-1}}{\leftarrow}} C_{k}(X) \stackrel{\delta_{k}}{\stackrel{\delta_{k}}{\leftarrow}} C_{k+1}(X)$$

• k-th Laplacian on X:

$$L_k(X; w) = \delta_k(X)^* \delta_k(X) + \delta_{k-1}(X) \delta_{k-1}(X)^*$$

- Let $w: X \to \mathbb{R}_{>0}$ (weight function).
- Inner product on $C_k(X)$: $\langle \phi, \psi \rangle = \sum_{\sigma \in X(k)} w(\sigma) \phi(\sigma) \psi(\sigma)$.

$$C_{k-1}(X) \stackrel{\delta_{k-1}}{\stackrel{\delta_{k-1}}{\leftarrow}} C_{k}(X) \stackrel{\delta_{k}}{\stackrel{\delta_{k}}{\leftarrow}} C_{k+1}(X)$$

• k-th Laplacian on X:

$$L_k(X; w) = \delta_k(X)^* \delta_k(X) + \delta_{k-1}(X) \delta_{k-1}(X)^* : C_k(X) \to C_k(X)$$

- Let $w: X \to \mathbb{R}_{>0}$ (weight function).
- Inner product on $C_k(X)$: $\langle \phi, \psi \rangle = \sum_{\sigma \in X(k)} w(\sigma) \phi(\sigma) \psi(\sigma)$.

$$C_{k-1}(X) \stackrel{\delta_{k-1}}{\stackrel{\delta_{k-1}}{\leftarrow}} C_{k}(X) \stackrel{\delta_{k}}{\stackrel{\delta_{k}}{\leftarrow}} C_{k+1}(X)$$

• k-th Laplacian on X:

$$L_k(X; w) = \delta_k(X)^* \delta_k(X) + \delta_{k-1}(X) \delta_{k-1}(X)^* : C_k(X) \to C_k(X)$$

• $L_k(X; w)$ is positive semi-definite.

- Let $w: X \to \mathbb{R}_{>0}$ (weight function).
- Inner product on $C_k(X)$: $\langle \phi, \psi \rangle = \sum_{\sigma \in X(k)} w(\sigma) \phi(\sigma) \psi(\sigma)$.

$$C_{k-1}(X) \stackrel{\delta_{k-1}}{\stackrel{\delta_{k-1}}{\leftarrow}} C_{k}(X) \stackrel{\delta_{k}}{\stackrel{\delta_{k}}{\leftarrow}} C_{k+1}(X)$$

• k-th Laplacian on X:

$$L_k(X; w) = \delta_k(X)^* \delta_k(X) + \delta_{k-1}(X) \delta_{k-1}(X)^* : C_k(X) \to C_k(X)$$

- $L_k(X; w)$ is positive semi-definite.
- Eigenvalues: $0 \le \lambda_1(L_k(X; w)) \le \cdots \le \lambda_{|X(k)|}(L_k(X; w))$.

- Let $w: X \to \mathbb{R}_{>0}$ (weight function).
- Inner product on $C_k(X)$: $\langle \phi, \psi \rangle = \sum_{\sigma \in X(k)} w(\sigma) \phi(\sigma) \psi(\sigma)$.

$$C_{k-1}(X) \stackrel{\delta_{k-1}}{\stackrel{\delta_{k-1}}{\leftarrow}} C_{k}(X) \stackrel{\delta_{k}}{\stackrel{\delta_{k}}{\leftarrow}} C_{k+1}(X)$$

• k-th Laplacian on X:

$$L_k(X; w) = \delta_k(X)^* \delta_k(X) + \delta_{k-1}(X) \delta_{k-1}(X)^* : C_k(X) \to C_k(X)$$

- $L_k(X; w)$ is positive semi-definite.
- Eigenvalues: $0 \le \lambda_1(L_k(X; w)) \le \cdots \le \lambda_{|X(k)|}(L_k(X; w))$.
- k-th spectral gap: $\lambda_1(L_k(X; w))$.

- Let $w: X \to \mathbb{R}_{>0}$ (weight function).
- Inner product on $C_k(X)$: $\langle \phi, \psi \rangle = \sum_{\sigma \in X(k)} w(\sigma) \phi(\sigma) \psi(\sigma)$.

$$C_{k-1}(X) \stackrel{\delta_{k-1}}{\stackrel{\delta_{k-1}}{\leftarrow}} C_{k}(X) \stackrel{\delta_{k}}{\stackrel{\delta_{k}}{\leftarrow}} C_{k+1}(X)$$

• k-th Laplacian on X:

$$L_k(X; w) = \delta_k(X)^* \delta_k(X) + \delta_{k-1}(X) \delta_{k-1}(X)^* : C_k(X) \to C_k(X)$$

- $L_k(X; w)$ is positive semi-definite.
- Eigenvalues: $0 \le \lambda_1(L_k(X; w)) \le \cdots \le \lambda_{|X(k)|}(L_k(X; w))$.
- k-th spectral gap: $\lambda_1(L_k(X; w))$.

Eckmann '44: $\tilde{H}_k(X; \mathbb{R}) \cong \ker L_k(X; w)$.

- Let $w: X \to \mathbb{R}_{>0}$ (weight function).
- Inner product on $C_k(X)$: $\langle \phi, \psi \rangle = \sum_{\sigma \in X(k)} w(\sigma) \phi(\sigma) \psi(\sigma)$.

$$C_{k-1}(X) \stackrel{\delta_{k-1}}{\stackrel{\delta_{k-1}}{\leftarrow}} C_{k}(X) \stackrel{\delta_{k}}{\stackrel{\delta_{k}}{\leftarrow}} C_{k+1}(X)$$

• k-th Laplacian on X:

$$L_k(X; w) = \delta_k(X)^* \delta_k(X) + \delta_{k-1}(X) \delta_{k-1}(X)^* : C_k(X) \to C_k(X)$$

- $L_k(X; w)$ is positive semi-definite.
- Eigenvalues: $0 \le \lambda_1(L_k(X; w)) \le \cdots \le \lambda_{|X(k)|}(L_k(X; w))$.
- k-th spectral gap: $\lambda_1(L_k(X; w))$.

Eckmann '44: $\tilde{H}_k(X; \mathbb{R}) \cong \ker L_k(X; w)$.

- Let $w: X \to \mathbb{R}_{>0}$ (weight function).
- Inner product on $C_k(X)$: $\langle \phi, \psi \rangle = \sum_{\sigma \in X(k)} w(\sigma) \phi(\sigma) \psi(\sigma)$.

$$C_{k-1}(X) \stackrel{\delta_{k-1}}{\stackrel{\delta_{k-1}}{\longleftrightarrow}} C_{k}(X) \stackrel{\delta_{k}}{\stackrel{\delta_{k}}{\longleftrightarrow}} C_{k+1}(X)$$

• k-th Laplacian on X:

$$L_k(X; w) = \delta_k(X)^* \delta_k(X) + \delta_{k-1}(X) \delta_{k-1}(X)^* : C_k(X) \to C_k(X)$$

- $L_k(X; w)$ is positive semi-definite.
- Eigenvalues: $0 \le \lambda_1(L_k(X; w)) \le \cdots \le \lambda_{|X(k)|}(L_k(X; w))$.
- k-th spectral gap: $\lambda_1(L_k(X; w))$.

Eckmann '44: $\tilde{H}_k(X;\mathbb{R}) \cong \ker L_k(X;w)$. In particular, $\lambda_1(L_k(X;w)) > 0 \iff \tilde{H}_k(X;\mathbb{R}) = 0$.

Higher Laplacians - explicit form

• Notation: for $w \equiv 1$, $L_k(X; w) = L_k(X)$.

Higher Laplacians – explicit form

- Notation: for $w \equiv 1$, $L_k(X; w) = L_k(X)$. $L_k(X) \in \mathbb{R}^{|X(k)| \times |X(k)|}$,

Higher Laplacians – explicit form

- Notation: for $w \equiv 1$, $L_k(X; w) = L_k(X)$. $L_k(X) \in \mathbb{R}^{|X(k)| \times |X(k)|}$,

$$L_k(X)_{\sigma, au} = egin{cases} \deg(\sigma) + k + 1 & \sigma = au, \ \pm 1 & |\sigma \cap au| = k, \ \sigma \cup au
otherwise, \end{cases}$$

where:

Higher Laplacians – explicit form

- Notation: for $w \equiv 1$, $L_k(X; w) = L_k(X)$. $L_k(X) \in \mathbb{R}^{|X(k)| \times |X(k)|}$,

$$L_k(X)_{\sigma, au} = egin{cases} \deg(\sigma) + k + 1 & \sigma = au, \ \pm 1 & |\sigma \cap au| = k, \ \sigma \cup au
otherwise, \end{cases}$$

where:

•
$$\deg(\sigma) = |\{\tau \in X(k+1) : \sigma \subset \tau\}|.$$

•
$$L_0(X) = L(G) + J$$
, where:

- $L_0(X) = L(G) + J$, where:
- G = (V, E): one-dimensional skeleton of X (a graph).

- $L_0(X) = L(G) + J$, where:
- G = (V, E): one-dimensional skeleton of X (a graph).
- J = all-ones matrix,

- $L_0(X) = L(G) + J$, where:
- G = (V, E): one-dimensional skeleton of X (a graph).
- J = all-ones matrix,
- L(G) = graph Laplacian,

$$L(G)_{u,v} = egin{cases} \deg(u) & u = v, \ -1 & \{u,v\} \in E, \ 0 & ext{otherwise}. \end{cases}$$

- $L_0(X) = L(G) + J$, where:
- G = (V, E): one-dimensional skeleton of X (a graph).
- J = all-ones matrix,
- L(G) = graph Laplacian,

$$L(G)_{u,v} = egin{cases} \deg(u) & u = v, \ -1 & \{u,v\} \in E, \ 0 & ext{otherwise}. \end{cases}$$

• Eigenvalues of $L_0(X)$: $\lambda_1(L_0(X)) \leq \cdots \leq \lambda_{|V|} = |V|$,

- $L_0(X) = L(G) + J$, where:
- G = (V, E): one-dimensional skeleton of X (a graph).
- J = all-ones matrix,
- L(G) = graph Laplacian,

$$L(G)_{u,v} = egin{cases} \deg(u) & u = v, \ -1 & \{u,v\} \in E, \ 0 & ext{otherwise}. \end{cases}$$

- Eigenvalues of $L_0(X)$: $\lambda_1(L_0(X)) \leq \cdots \leq \lambda_{|V|} = |V|$,
- Eigenvalues of $L(G): 0, \lambda_1(L_0(X)), \ldots, \lambda_{|V|-1}(L_0(X))$.

• For $\sigma \in X$, the link of σ in X:

$$\mathrm{lk}(X,\sigma) = \{ \tau \in X : \, \tau \cap \sigma = \emptyset, \, \tau \cup \sigma \in X \}.$$

• For $\sigma \in X$, the link of σ in X:

$$lk(X,\sigma) = \{ \tau \in X : \tau \cap \sigma = \emptyset, \tau \cup \sigma \in X \}.$$

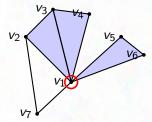
• We may think of $lk(X, \sigma)$ as the neighborhood of σ in X.

• For $\sigma \in X$, the link of σ in X:

$$\mathrm{lk}(X,\sigma) = \{ \tau \in X : \, \tau \cap \sigma = \emptyset, \, \tau \cup \sigma \in X \}.$$

• We may think of $lk(X, \sigma)$ as the neighborhood of σ in X.

Example:

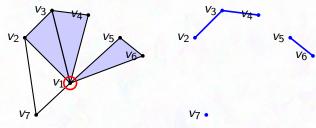


• For $\sigma \in X$, the link of σ in X:

$$lk(X,\sigma) = \{ \tau \in X : \tau \cap \sigma = \emptyset, \tau \cup \sigma \in X \}.$$

• We may think of $lk(X, \sigma)$ as the neighborhood of σ in X.

Example:



• Let X be a pure d-dimensional simplicial complex (all maximal faces of dimension d).

- Let X be a pure d-dimensional simplicial complex (all maximal faces of dimension d).
- Weight function: $w(\sigma) = \#$ of maximal faces containing σ .

- Let X be a pure d-dimensional simplicial complex (all maximal faces of dimension d).
- Weight function: $w(\sigma) = \#$ of maximal faces containing σ .
- Denote $L_k(X; w) = \tilde{L}_k(X)$.

- Let X be a pure d-dimensional simplicial complex (all maximal faces of dimension d).
- Weight function: $w(\sigma) = \#$ of maximal faces containing σ .
- Denote $L_k(X; w) = \tilde{L}_k(X)$.

Garland '73:

Let $0 \le \ell < k \le d$. Then,

$$(k-\ell)\lambda_1(\tilde{L}_k(X)) \geq (k+1) \cdot \min_{\sigma \in X(\ell)} \lambda_1(\tilde{L}_{k-\ell-1}(\operatorname{lk}(X,\sigma))) - (\ell+1)(d-k).$$

- Let X be a pure d-dimensional simplicial complex (all maximal faces of dimension d).
- Weight function: $w(\sigma) = \#$ of maximal faces containing σ .
- Denote $L_k(X; w) = \tilde{L}_k(X)$.

Garland '73:

Let $0 \le \ell < k \le d$. Then,

$$(k-\ell)\lambda_1(\tilde{L}_k(X)) \geq (k+1) \cdot \min_{\sigma \in X(\ell)} \lambda_1(\tilde{L}_{k-\ell-1}(\operatorname{lk}(X,\sigma))) - (\ell+1)(d-k).$$

In particular, if

$$\lambda_1(\tilde{L}_{k-\ell-1}(\operatorname{lk}(X,\sigma))) > \frac{(\ell+1)(d-k)}{k+1}$$

for all $\sigma \in X(\ell)$, then $\tilde{H}_k(X; \mathbb{R}) = 0$.

Garland's method – some remarks

• Specific choice of weight function and requirement of pureness is not essential.

Garland's method – some remarks

- Specific choice of weight function and requirement of pureness is not essential.
- Case k = d 1, $\ell = k 1 = d 2$, is particularly useful. If

$$\lambda_1(\tilde{L}_0(\operatorname{lk}(X,\sigma))) > 1 - \frac{1}{k+1}$$

for all $\sigma \in X(d-2)$, then $\tilde{H}_{d-1}(X;\mathbb{R}) = 0$.

Garland's method – some remarks

- Specific choice of weight function and requirement of pureness is not essential.
- Case k=d-1, $\ell=k-1=d-2$, is particularly useful. If

$$\lambda_1(\tilde{L}_0(\operatorname{lk}(X,\sigma))) > 1 - \frac{1}{k+1}$$

for all $\sigma \in X(d-2)$, then $\tilde{H}_{d-1}(X;\mathbb{R}) = 0$. Note that $\mathrm{lk}(X,\sigma)$ is a graph in this case.

• Garland '73: vanishing of certain cohomology groups of finite quotients of Bruhat-Tits buildings associated with linear algebraic groups over a non-archimedean local field.

- Garland '73: vanishing of certain cohomology groups of finite quotients of Bruhat-Tits buildings associated with linear algebraic groups over a non-archimedean local field.
- Study of random simplicial complexes (Gundert-Wagner '16, Hoffman-Kahle-Paquette '21, ...).

- Garland '73: vanishing of certain cohomology groups of finite quotients of Bruhat-Tits buildings associated with linear algebraic groups over a non-archimedean local field.
- Study of random simplicial complexes (Gundert-Wagner '16, Hoffman-Kahle-Paquette '21, ...).
- Construction of groups with Kazhdan's property (*T*) (Pansu '96, Zuk '96, Ballmann-Światkowski '97,...)

- Garland '73: vanishing of certain cohomology groups of finite quotients of Bruhat-Tits buildings associated with linear algebraic groups over a non-archimedean local field.
- Study of random simplicial complexes (Gundert-Wagner '16, Hoffman-Kahle-Paquette '21, ...).
- Construction of groups with Kazhdan's property (*T*) (Pansu '96, Zuk '96, Ballmann-Światkowski '97,...)
- Random walks on simplicial complexes (Oppenheim '18, Kaufman-Oppenheim '18, Anari-Liu-Oveis Gharan-Vinzant '19,...).

- Garland '73: vanishing of certain cohomology groups of finite quotients of Bruhat-Tits buildings associated with linear algebraic groups over a non-archimedean local field.
- Study of random simplicial complexes (Gundert-Wagner '16, Hoffman-Kahle-Paquette '21, ...).
- Construction of groups with Kazhdan's property (*T*) (Pansu '96, Zuk '96, Ballmann-Światkowski '97,...)
- Random walks on simplicial complexes (Oppenheim '18, Kaufman-Oppenheim '18, Anari-Liu-Oveis Gharan-Vinzant '19,...).
- Hypergraph matching (Aharoni-Berger-Meshulam '05)

- Garland '73: vanishing of certain cohomology groups of finite quotients of Bruhat-Tits buildings associated with linear algebraic groups over a non-archimedean local field.
- Study of random simplicial complexes (Gundert-Wagner '16, Hoffman-Kahle-Paquette '21, ...).
- Construction of groups with Kazhdan's property (*T*) (Pansu '96, Zuk '96, Ballmann-Światkowski '97,...)
- Random walks on simplicial complexes (Oppenheim '18, Kaufman-Oppenheim '18, Anari-Liu-Oveis Gharan-Vinzant '19,...).
- ullet Hypergraph matching (Aharoni-Berger-Meshulam '05) o Global version of Garland's method.

- Garland '73: vanishing of certain cohomology groups of finite quotients of Bruhat-Tits buildings associated with linear algebraic groups over a non-archimedean local field.
- Study of random simplicial complexes (Gundert-Wagner '16, Hoffman-Kahle-Paquette '21, ...).
- Construction of groups with Kazhdan's property (*T*) (Pansu '96, Zuk '96, Ballmann-Światkowski '97,...)
- Random walks on simplicial complexes (Oppenheim '18, Kaufman-Oppenheim '18, Anari-Liu-Oveis Gharan-Vinzant '19,...).
- ullet Hypergraph matching (Aharoni-Berger-Meshulam '05) o Global version of Garland's method.
- Extension of Garland's theorem to posets (Kauffman-Tessler '25, Babson-Welker '23+).

Garland's method - proof idea

Localization:

For
$$\phi \in C_k(X)$$
 and $v \in V$, define $\phi_v \in C_{k-1}(\operatorname{lk}(X,v))$ by
$$\phi_v(\sigma) = \pm \phi(\sigma \cup \{v\}).$$

Garland's method - proof idea

Localization:

For
$$\phi \in C_k(X)$$
 and $v \in V$, define $\phi_v \in C_{k-1}(\operatorname{lk}(X,v))$ by
$$\phi_v(\sigma) = \pm \phi(\sigma \cup \{v\}).$$

 $\bullet \sum_{v \in V} \|\phi_v\|^2 = (k+1)\|\phi\|^2.$

Garland's method - proof idea

Localization:

For $\phi \in C_k(X)$ and $v \in V$, define $\phi_v \in C_{k-1}(\operatorname{lk}(X,v))$ by $\phi_v(\sigma) = \pm \phi(\sigma \cup \{v\}).$

- $\bullet \sum_{v \in V} \|\phi_v\|^2 = (k+1)\|\phi\|^2.$
- Write $\langle \tilde{L}_k(X)\phi, \phi \rangle$ in terms of $\langle \tilde{L}_{k-1}(\operatorname{lk}(X, v))\phi_v, \phi_v \rangle$, for $v \in V$ (plus correction term).

• For $M_i \in \mathbb{R}^{n_i \times n_i}$ (i = 1, ..., m), let $\bigoplus_{i=1}^m M_i$ be a block diagonal matrix with blocks $M_1, ..., M_m$.

• For $M_i \in \mathbb{R}^{n_i \times n_i}$ (i = 1, ..., m), let $\bigoplus_{i=1}^m M_i$ be a block diagonal matrix with blocks $M_1, ..., M_m$.

Let X be a pure d-dimensional simplicial complex, and let $0 \le \ell < k \le d$. Then, for all $1 \le i \le |X(k)|$,

$$(k-\ell)\lambda_i(\tilde{L}_k(X)) \geq (k+1)\lambda_i\left(\bigoplus_{\sigma \in X(\ell)} \tilde{L}_{k-\ell-1}(\operatorname{lk}(X,\sigma))\right) - (\ell+1)(d-k).$$

• For $M_i \in \mathbb{R}^{n_i \times n_i}$ (i = 1, ..., m), let $\bigoplus_{i=1}^m M_i$ be a block diagonal matrix with blocks $M_1, ..., M_m$.

L '25+.

Let X be a pure d-dimensional simplicial complex, and let $0 \le \ell < k \le d$. Then, for all $1 \le i \le |X(k)|$,

$$(k-\ell)\lambda_i(\tilde{L}_k(X)) \ge (k+1)\lambda_i\left(\bigoplus_{\sigma \in X(\ell)} \tilde{L}_{k-\ell-1}(\operatorname{lk}(X,\sigma))\right) - (\ell+1)(d-k).$$

Corollary (L '25+)

$$\dim(ilde{H}_k(X;\mathbb{R})) \leq \sum_{\sigma \in X(\ell)} t_{\sigma},$$

where
$$t_{\sigma}=\left(\# \text{ of eigenvalues of } \widetilde{L}_{k-\ell-1}(\operatorname{lk}(X,\sigma)) \leq rac{(\ell+1)(d-k)}{k+1}
ight).$$

• Case $\ell=k-1$ of Corollary was proved by Hino and Kanazawa ('19) with different methods.

ullet Case $\ell=k-1$ of Corollary was proved by Hino and Kanazawa ('19) with different methods.

Eigenvalue interlacing (Cauchy):

Let $m \ge n$. If $A \in \mathbb{R}^{m \times m}$ is symmetric, and $S \in \mathbb{R}^{m \times n}$ such that $S^T S = I$. Then, for all $1 \le i \le n$,

$$\lambda_i(S^T A S) \geq \lambda_i(A).$$

ullet Case $\ell=k-1$ of Corollary was proved by Hino and Kanazawa ('19) with different methods.

Eigenvalue interlacing (Cauchy):

Let $m \ge n$. If $A \in \mathbb{R}^{m \times m}$ is symmetric, and $S \in \mathbb{R}^{m \times n}$ such that $S^T S = I$. Then, for all $1 \le i \le n$,

$$\lambda_i(S^T A S) \geq \lambda_i(A).$$

Idea of proof:

• Write $\tilde{L}_k(X)$ as $S^T \left(\bigoplus_{\sigma \in X(\ell)} \tilde{L}_{k-\ell-1}(\operatorname{lk}(X,\sigma)) \right) S$ (up to "correction term"), apply interlacing theorem.

 \bullet Case $\ell=k-1$ of Corollary was proved by Hino and Kanazawa ('19) with different methods.

Eigenvalue interlacing (Cauchy):

Let $m \ge n$. If $A \in \mathbb{R}^{m \times m}$ is symmetric, and $S \in \mathbb{R}^{m \times n}$ such that $S^T S = I$. Then, for all $1 \le i \le n$,

$$\lambda_i(S^T A S) \geq \lambda_i(A).$$

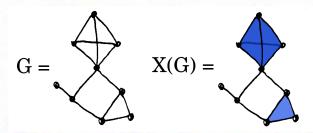
Idea of proof:

- Write $\tilde{L}_k(X)$ as $S^T \left(\bigoplus_{\sigma \in X(\ell)} \tilde{L}_{k-\ell-1}(\operatorname{lk}(X,\sigma)) \right) S$ (up to "correction term"), apply interlacing theorem.
- Motivated by ideas from Babson-Welker ('23+).

The clique complex (or flag complex) X(G) of graph G = (V, E): Vertex set: V, Simplices: all cliques of G.

The clique complex (or flag complex) X(G) of graph G = (V, E): Vertex set: V, Simplices: all cliques of G.

Example



Aharoni-Berger-Meshulam '05:

Let
$$G = (V, E)$$
 be an *n*-vertex graph. Then, for all $k \ge 1$,

$$k \cdot \lambda_1(L_k(X(G))) \geq (k+1) \cdot \lambda_1(L_{k-1}(X(G))) - n.$$

Aharoni-Berger-Meshulam '05:

Let G = (V, E) be an *n*-vertex graph. Then, for all $k \ge 1$,

$$k \cdot \lambda_1(L_k(X(G))) \geq (k+1) \cdot \lambda_1(L_{k-1}(X(G))) - n.$$

As a consequence, if $\lambda_1(L_0(X(G))) = \lambda_2(L(G)) > \frac{kn}{k+1}$, then $\tilde{H}_k(X(G);\mathbb{R}) = 0$.

An extended version of Global Garland

• For a symmetric matrix $M \in \mathbb{R}^{n \times n}$, let $\mathcal{S}_k(M)$ be the multi-set of all possible sums of k distinct eigenvalues of M

An extended version of Global Garland

• For a symmetric matrix $M \in \mathbb{R}^{n \times n}$, let $\mathcal{S}_k(M)$ be the multi-set of all possible sums of k distinct eigenvalues of M ($|\mathcal{S}_k(M)| = \binom{n}{k}$).

An extended version of Global Garland

- For a symmetric matrix $M \in \mathbb{R}^{n \times n}$, let $\mathcal{S}_k(M)$ be the multi-set of all possible sums of k distinct eigenvalues of M ($|\mathcal{S}_k(M)| = \binom{n}{k}$).
- Let $S_{k,i}(M) = i$ -th smallest element in S_k .

- For a symmetric matrix $M \in \mathbb{R}^{n \times n}$, let $\mathcal{S}_k(M)$ be the multi-set of all possible sums of k distinct eigenvalues of M ($|\mathcal{S}_k(M)| = \binom{n}{k}$).
- Let $S_{k,i}(M) = i$ -th smallest element in S_k .

L '24:

Let G = (V, E) be an *n*-vertex graph, let $k \ge 1$ and $1 \le i \le |X(G)(k)|$. Then,

$$\lambda_i(L_k(X(G))) \geq S_{k+1,i}(L_0(X(G))) - k \cdot n.$$

- For a symmetric matrix $M \in \mathbb{R}^{n \times n}$, let $\mathcal{S}_k(M)$ be the multi-set of all possible sums of k distinct eigenvalues of M ($|\mathcal{S}_k(M)| = \binom{n}{k}$).
- Let $S_{k,i}(M) = i$ -th smallest element in S_k .

L '24:

Let G = (V, E) be an *n*-vertex graph, let $k \ge 1$ and $1 \le i \le |X(G)(k)|$. Then,

$$\lambda_i(L_k(X(G))) \geq S_{k+1,i}(L_0(X(G))) - k \cdot n.$$

$$\dim(\tilde{H}_k(X(G);\mathbb{R})) \leq |\{t \in \mathcal{S}_{k+1}(L_0(X(G))) : t \leq k \cdot n\}|.$$

- For a symmetric matrix $M \in \mathbb{R}^{n \times n}$, let $\mathcal{S}_k(M)$ be the multi-set of all possible sums of k distinct eigenvalues of M ($|\mathcal{S}_k(M)| = \binom{n}{k}$).
- Let $S_{k,i}(M) = i$ -th smallest element in S_k .

L '24:

Let G = (V, E) be an *n*-vertex graph, let $k \ge 1$ and $1 \le i \le |X(G)(k)|$. Then,

$$\lambda_i(L_k(X(G))) \geq S_{k+1,i}(L_0(X(G))) - k \cdot n.$$

$$\dim(\tilde{H}_k(X(G);\mathbb{R})) \leq \left|\left\{t \in \mathcal{S}_{k+1}(L_0(X(G))): \ t \leq k \cdot n\right\}\right|.$$

•
$$\lambda_1(L_0(X(G))) > \frac{k \cdot n}{k+1}$$

- For a symmetric matrix $M \in \mathbb{R}^{n \times n}$, let $\mathcal{S}_k(M)$ be the multi-set of all possible sums of k distinct eigenvalues of M ($|\mathcal{S}_k(M)| = \binom{n}{k}$).
- Let $S_{k,i}(M) = i$ -th smallest element in S_k .

L '24:

Let G = (V, E) be an *n*-vertex graph, let $k \ge 1$ and $1 \le i \le |X(G)(k)|$. Then,

$$\lambda_i(L_k(X(G))) \geq S_{k+1,i}(L_0(X(G))) - k \cdot n.$$

$$\dim(\tilde{H}_k(X(G);\mathbb{R})) \leq |\{t \in \mathcal{S}_{k+1}(L_0(X(G))) : t \leq k \cdot n\}|.$$

•
$$\lambda_1(L_0(X(G))) > \frac{k \cdot n}{k+1} \implies S_{k+1,1}(L_0(X(G))) > k \cdot n$$

- For a symmetric matrix $M \in \mathbb{R}^{n \times n}$, let $\mathcal{S}_k(M)$ be the multi-set of all possible sums of k distinct eigenvalues of M ($|\mathcal{S}_k(M)| = \binom{n}{k}$).
- Let $S_{k,i}(M) = i$ -th smallest element in S_k .

L '24:

Let G = (V, E) be an *n*-vertex graph, let $k \ge 1$ and $1 \le i \le |X(G)(k)|$. Then,

$$\lambda_i(L_k(X(G))) \geq S_{k+1,i}(L_0(X(G))) - k \cdot n.$$

$$\dim(\tilde{H}_k(X(G);\mathbb{R})) \leq \left|\left\{t \in \mathcal{S}_{k+1}(L_0(X(G))): \ t \leq k \cdot n\right\}\right|.$$

$$\bullet \ \lambda_1(L_0(X(G))) > \frac{k \cdot n}{k+1} \implies S_{k+1,1}(L_0(X(G))) > k \cdot n \implies \tilde{H}_k(X(G); \mathbb{R}) = 0.$$

Additive compound matrices (Wielandt '67)

• For a matrix $M \in \mathbb{R}^{n \times n}$, the *k*-th additive compound is the matrix $M^{[k]} \in \mathbb{R}^{\binom{n}{k} \times \binom{n}{k}}$ defined by

$$M^{[k]}(v_1 \wedge \cdots \wedge v_k) = \sum_{i=1}^m v_1 \wedge \cdots \wedge Mv_i \wedge \cdots \wedge v_k,$$

for $v_1, \ldots, v_k \in \mathbb{R}^n$.

Additive compound matrices (Wielandt '67)

• For a matrix $M \in \mathbb{R}^{n \times n}$, the *k*-th additive compound is the matrix $M^{[k]} \in \mathbb{R}^{\binom{n}{k} \times \binom{n}{k}}$ defined by

$$M^{[k]}(v_1 \wedge \cdots \wedge v_k) = \sum_{i=1}^m v_1 \wedge \cdots \wedge Mv_i \wedge \cdots \wedge v_k,$$

for $v_1, \ldots, v_k \in \mathbb{R}^n$.

• Eigenvalues of $M^{[k]}$ are exactly all possible sums of k distinct eigenvalues of M.

Additive compound matrices (Wielandt '67)

• For a matrix $M \in \mathbb{R}^{n \times n}$, the *k*-th additive compound is the matrix $M^{[k]} \in \mathbb{R}^{\binom{n}{k} \times \binom{n}{k}}$ defined by

$$M^{[k]}(v_1 \wedge \cdots \wedge v_k) = \sum_{i=1}^m v_1 \wedge \cdots \wedge Mv_i \wedge \cdots \wedge v_k,$$

for $v_1, \ldots, v_k \in \mathbb{R}^n$.

• Eigenvalues of $M^{[k]}$ are exactly all possible sums of k distinct eigenvalues of M.

Proof idea

• $L_k(X(G))$ is a submatrix of $L_0(X(G))^{[k+1]}$ (up to correction term).

Additive compound matrices (Wielandt '67)

• For a matrix $M \in \mathbb{R}^{n \times n}$, the *k*-th additive compound is the matrix $M^{[k]} \in \mathbb{R}^{\binom{n}{k} \times \binom{n}{k}}$ defined by

$$M^{[k]}(v_1 \wedge \cdots \wedge v_k) = \sum_{i=1}^m v_1 \wedge \cdots \wedge Mv_i \wedge \cdots \wedge v_k,$$

for $v_1, \ldots, v_k \in \mathbb{R}^n$.

• Eigenvalues of $M^{[k]}$ are exactly all possible sums of k distinct eigenvalues of M.

Proof idea

- $L_k(X(G))$ is a submatrix of $L_0(X(G))^{[k+1]}$ (up to correction term).
- Apply eigenvalue interlacing!

Some open problems

• A generalization of the ABM result for "clique complexes of hypergraphs" is known to hold (L '18). Could the additive compound approach be extended to this context as well?

Some open problems

- A generalization of the ABM result for "clique complexes of hypergraphs" is known to hold (L '18). Could the additive compound approach be extended to this context as well?
- Find more applications of eigenvalue interlacing in the context of Garland-type results.

